The Face

Normal Anatomy of the Face

The fetal face can be studied with ultrasound very early in gestation. Several elements of the normal anatomy (orbits, forehead) can be identified as early as the 12th week of gestation. Before 14 weeks, the soft tissues of the face are too thin to be reliably imaged with current ultrasound equipment. After this time, forehead, orbits, nose, lips, and ears can be consistently identified \(^1\) and studied in detail. A systematic approach to the examination of the fetal face should include sagittal, axial, and coronal planes.

SAGITTAL PLANES

Sagittal planes of the fetal face are useful in the assessment of the normality of the profile: forehead, nose, and jaw (Fig. 2-1). Ears are well visualized in parasagittal scans tangential to the calvarium. In late gestation, significant details of the anatomy of the external ear can be seen. The helix, scaphoid fossa, triangular fossa, concha, antihelix, tragus, antitragus, intertragic incisure, and lobule can be identified (Fig. 2-2).

AXIAL PLANES

An axial scan slightly caudal to the one commonly used for the determination of the biparietal diameter easily reveals both orbits. This view (Fig. 2-3) can be used for determination of the ocular biometry. \(^2,3\) Nomograms for binocular distance, interocular distance, and ocular diameter (Fig. 2-4, Table 2-1) are available. One type of nomogram is utilized for the evaluation of ocular biometry when the gestational age is known (Figs. 2-5, 2-6, 2-7). If the gestational age is uncertain, nomograms constructed with the biparietal diameter as the independent variable can be utilized (Figs. 2-8, 2-9, 2-10). By moving the transducer caudally, the anterior palate can be visualized, and a slight angulation will allow visualization of the tongue within the oral cavity (Fig. 2-11).

CORONAL PLANES

The coronal planes are the most important ones in the evaluation of the integrity of facial anatomy. Figure 2-12 illustrates a sequence of scans tangential to the
Figure 2-1. A. Fetal profile at 25 weeks. B. Schematic representation of the scanning planes to be used for obtaining axial and coronal views of the fetal face. (Figure A reproduces with permission from Pilu et al: Am J Obstet Gynecol 155:45, 1986.)

Figure 2-2. The helix (H), scaphoid fossa (SF), triangular fossa (TF), concha (C), antihelix (AH), tragus (T), and intertragic incisure (IF) can be seen in this view of the fetal ear.

Figure 2-3. Axial scan passing through the orbits (O) of a normal third trimester fetus. N, nasal process. (Reproduced with permission from Pilu et al.: Am J Obstet Gynecol 155:45, 1986.)
Orbits, eyelids, nose, and lips are well visualized. The tip of the nose, the alae nasi, and the columna are seen above the upper lip. The nostrils typically appear as two little anechoic areas (Fig. 2-13). In this scanning plane, it is possible to evaluate movements of the mouth, including protrusion of the tongue, "chewing" movements, and wide opening of the mouth (Fig. 2-14). By tilting the transducer, it is sometimes possible to visualize the intranasal portion of the upper airways (Fig. 2-15).

The lens, iris, pupil, cornea, and extraocular structures such as muscles, retro-orbital fat, and optic nerve may be visualized. Movements of both eyes are not synchronous and conjugated, limiting the possibility of the prenatal diagnosis of strabismus.

This chapter focuses on the anomalies more frequently found during the course of prenatal diagnosis. It is divided into anomalies of the orbits, nose, lip, palate and mandible. Besides these dysmorphic
anomalies, ultrasound examination of the face can identify less common and more benign anomalies such as lacrimal duct cysts and hemangiomas. Congenital obstruction of the nasolacrimal duct results in cystic dilatation of the proximal part of the duct (dacrocystocele). It has been identified prenatally as a hypoechogenic mass inferior to the globe. The differential diagnosis includes an anterior cephalocele, hemangiomas, and dermoid cyst. Hemangiomas generally have a solid appearance or multiple septae. Dermoid cysts usually have a superolateral location. Anterior cephaloceles may be difficult to differentiate from these lesions. The presence of hydrocephaly should raise the index of suspicion for a cephalocele. Dacrocystoceles resolve spontaneously in 78 percent of cases by 3 months and in 91 percent of cases by 6 months. Hemangiomas of the fetal face have been recognized prenatally. They appear as exophytic lesions with echogenicity similar to the placenta. Pulsation may be identified. The differential diagnosis includes cephaloceles and teratomas of the face. The cavernous variety of hemangiomas generally disappears spontaneously. A giant hemangioma may be associated with thrombocytopenia (Kasabach-Merritt...
Figure 2-7. Binocular distance versus gestational age.

Figure 2-8. Ocular diameter versus biparietal diameter.
Figure 2-9. Interocular distance versus biparietal diameter

Figure 2-10. Binocular distance versus biparietal diameter
Figure 2-11. Axial scan of the lower fetal face demonstrating the upper lip (UL) and the anterior palate (P). The teethbuds (TB) and cheeks (Ch) can be seen. At a slightly lower level, the tongue (T) is seen filling the oral cavity. (Reproduced with permission from Pilu et al: Am J Obstet Gynecol 155: 45, 1986.)

Figure 2-12. Cross sectional sweep from posterior to anterior, demonstrating the lens (L) inside the corpus vitreum, the eyelids (E), the upper and inferior lip (UL and IL), and the nose (N). (Reproduced with permission from Pilu et al.: Am J Obstet Gynecol 155: 45, 1986.)
Figure 2-13. The tip (N) of the nose, the alae nasi (A), and the columna (C) are seen above the upper lip (UL). The nostril typically appears as two little anechoic areas (tiny arrows). LL, lower lip.

Figure 2-14. A. Coronal scan permits the visualization of the tongue (T) protruding. Small arrows, nostrils. B. Wide opening of the mouth (*) in the same fetus.

Figure 2-15. Transverse sections reveal the intranasal portion of the upper airways (small arrows) between the concha and the septal cartilage (SC). Large arrows, nostrils.
syndrome). Complications of hemangiomas include ulceration, bleeding, infection and scar formation. 3a

REFERENCES

1b. Davis WK, Mahony BS, Carroll BA, Bowie JD: Antenatal sonographic detection of benign dacrocystoceles

ANOMALIES OF THE ORBITS

Hypertelorism

Synonym
Euryopia.
Definition
Hypertelorism is an increased interocular distance.
Incidence
Rare.
Embryology and Pathogenesis
In early developmental stages of the human embryo, the eyes are placed laterally in the primitive face in a fashion similar to that of lower animals with panoramic vision. As gestation progresses, they migrate toward the midline, creating favorable conditions for the development of stereoscopic vision (Fig. 2-16). Three different mechanisms have been postulated to be responsible for hypertelorism\(^2\): (1) primary arrest in the forward migration of the eyes, (2) secondary arrest due to the presence of a midline tumor, such as a frontal meningoencephalocele, or (3) abnormal growth vectors of the skull bones manifested through an enlargement of the lesser wings of the sphenoid. \(^4\) Another hypothesis is that hypertelorism is due to abnormal growth of the splachnocranium associated with maldevelopment of the bones derived from the first branchial arches. \(^4\)

Pathology
Three parameters have been used to quantitate ocular spacing in infants and adults: interpupillary distance, canthal distance, and interorbital distance. Canthal measurements include the distance between the two medial canthi (intercanthal) and the distance between the two external canthi (outer canthal). These measurements are obtained from fronto view photographs. \(^12,30,45,55,61,69,93,94\) Another commonly used parameter is the canthal index, which is the ratio between the inner and outer

Figure 2-16. Schematic representation of the development of the facial structures from the 4th to 10th week of gestation. In the earliest stages, the primitive eyes (E) are positioned on both sides of the cephalic pole. As gestation progresses, they migrate toward the midline. FNP, frontonasal prominence; MaP, maxillary prominence; MP, mandibular prominence; Ea, ears; S, stomodeum.
<table>
<thead>
<tr>
<th>MALFORMATIONS AND SYNDROMES ASSOCIATED WITH HYPERTelorISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertelorism with other median plane facial malformations</td>
</tr>
<tr>
<td>Median cleft face syndrome: V-shaped frontal hairline (widow's peak), cranial bifidum occulium, median cleft nose (bilid nose, Doggennase), median cleft lip and palate14,20,84,86</td>
</tr>
<tr>
<td>Frontal, ethmoidal, or sphenoidal meningoencephalocoele</td>
</tr>
<tr>
<td>Frontal, ethmoidal, or sphenoidal dermoid–epidermoid–teratoma</td>
</tr>
<tr>
<td>Nasal glioma</td>
</tr>
<tr>
<td>Nasofrontal mucoceles, segmental villito, and poroencephalhy106</td>
</tr>
<tr>
<td>Hypertelorism with miscellaneous facial defects</td>
</tr>
<tr>
<td>Proptosis lateralis20</td>
</tr>
<tr>
<td>Facial clefts other than median20</td>
</tr>
<tr>
<td>Facial hemangioma66</td>
</tr>
<tr>
<td>Extra nares20</td>
</tr>
<tr>
<td>Hypertelorism with other prominent skull dysplasias</td>
</tr>
<tr>
<td>Craniosynostosis with or without syndactyly20</td>
</tr>
<tr>
<td>Aper1</td>
</tr>
<tr>
<td>Crouzon syndrome</td>
</tr>
<tr>
<td>Pfeiffer syndrome</td>
</tr>
<tr>
<td>Carpenter syndrome</td>
</tr>
<tr>
<td>Klebelsbichlaedel</td>
</tr>
<tr>
<td>Thickened skull</td>
</tr>
<tr>
<td>Albers-Schonberg disease</td>
</tr>
<tr>
<td>Cranionomaphyseal dysplasia of Pyle-Metson106</td>
</tr>
<tr>
<td>Hypertelorism with teeth defects20</td>
</tr>
<tr>
<td>Rieger syndrome with teeth hypoplasia62</td>
</tr>
<tr>
<td>Hypertelorism with prominent neurologic and brain defects</td>
</tr>
<tr>
<td>Hydrocephalus, any prenatal type including myelomeningocele (Chiari malformation, Arnold-Chiari malformation)</td>
</tr>
<tr>
<td>Megalencephaly with generalized skull enlargement20</td>
</tr>
<tr>
<td>Anatomic megalencephaly: simple autosomal dominant21</td>
</tr>
<tr>
<td>Metabolic megalencephaly, particularly mucopolysaccharidoses</td>
</tr>
<tr>
<td>Familial neurovascular lipidosis syndrome</td>
</tr>
<tr>
<td>lissencephaly20</td>
</tr>
<tr>
<td>Hypertelorism with prominent skin manifestations and frequent mental retardation</td>
</tr>
<tr>
<td>Waardenburg syndrome of dystopia canthorum, white forelock, and deafness107</td>
</tr>
</tbody>
</table>

TABLE 2-2. MALFORMATIONS AND SYNDROMES ASSOCIATED WITH HYPERTELORISM

<table>
<thead>
<tr>
<th>Malformation or Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertelorism with other median plane facial malformations</td>
</tr>
<tr>
<td>Median cleft face syndrome: V-shaped frontal hairline (widow’s peak), cranium bifidum occultum, median cleft nose (bifid nose, Doggennase), median cleft lip and palate</td>
</tr>
<tr>
<td>Frontal, ethmoidal, or sphenoidal meningencephalocele</td>
</tr>
<tr>
<td>Frontal, ethmoidal, or sphenoidal dermoid–lipo–teratoma</td>
</tr>
<tr>
<td>Nasal glioma</td>
</tr>
<tr>
<td>Nasofrontal mucocoele, segmental vitiligo, and porencephaly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hypertelorism with miscellaneous facial defects</td>
</tr>
<tr>
<td>Proboscis lateralis</td>
</tr>
<tr>
<td>Facial clefts other than median</td>
</tr>
<tr>
<td>Facial hemangioma</td>
</tr>
<tr>
<td>Extr. nares</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hypertelorism with other prominent skull dysplasias</td>
</tr>
<tr>
<td>Craniosynostosis with or without syndactyly</td>
</tr>
<tr>
<td>Apert</td>
</tr>
<tr>
<td>Crouzon syndrome</td>
</tr>
<tr>
<td>Pfeiffer syndrome</td>
</tr>
<tr>
<td>Carpenter syndrome</td>
</tr>
<tr>
<td>Kleeblattschaedel</td>
</tr>
<tr>
<td>Thickened skull</td>
</tr>
<tr>
<td>Albers-Schonberg disease</td>
</tr>
<tr>
<td>Cranioectoaphyseal dysplasia of Pyle</td>
</tr>
<tr>
<td>Metatarsism</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hypertelorism with teeth defects</td>
</tr>
<tr>
<td>Rieger syndrome with teeth hypoplasia</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hypertelorism with prominent neurologic and brain defects</td>
</tr>
<tr>
<td>Hydrocephalus, any prenatal type including myelomeningocele</td>
</tr>
<tr>
<td>(Chiari malformation, Arnold-Chiari malformation)</td>
</tr>
<tr>
<td>Megalencephaly with generalized skull enlargement</td>
</tr>
<tr>
<td>Anatomic malenecephaly: simple autosomal dominant</td>
</tr>
<tr>
<td>Metabolic malenecephaly, particularly mucopolysaccharidosis</td>
</tr>
<tr>
<td>Familial neurovisceral lipidosis syndrome</td>
</tr>
<tr>
<td>Lissencephaly</td>
</tr>
<tr>
<td>Agenesis of the septum pelliculorum</td>
</tr>
<tr>
<td>Agenesis of the corpus callosum</td>
</tr>
<tr>
<td>With microcephaly and mild extremity malformation</td>
</tr>
<tr>
<td>Arhinencephaly; hypertelorism with arhinencephaly very rare</td>
</tr>
<tr>
<td>hypotelorism very common</td>
</tr>
<tr>
<td>Possibly patients with Meckel-Gruber dysencephalia</td>
</tr>
<tr>
<td>Splanchnocystis syndrome</td>
</tr>
<tr>
<td>Peripher. neuritis, ulnar</td>
</tr>
<tr>
<td>G syndrome of dysphagia–dysphonia, ear anomalies, and</td>
</tr>
<tr>
<td>hypospadias</td>
</tr>
<tr>
<td>Essential tremor and nystalgia</td>
</tr>
<tr>
<td>Bilateral deafness–microtia S (Mengel-Konigsmark-Berlin-</td>
</tr>
<tr>
<td>McKusick syndrome)</td>
</tr>
<tr>
<td>Pinskiy-DiGeorge-Harley-Baird oculoencebral syndrome of</td>
</tr>
<tr>
<td>microphthalmus, iris dysplasia, severe retardation, and</td>
</tr>
<tr>
<td>spastic tetraplegia</td>
</tr>
<tr>
<td>Cerebropapatalenal syndrome of high forehead,</td>
</tr>
<tr>
<td>erekryonicynmmal hypotonia, mild skeletal malformation;</td>
</tr>
<tr>
<td>patients may have only calvarial rather than orbital</td>
</tr>
<tr>
<td>hypertelorism</td>
</tr>
<tr>
<td>Cerebral gigantism</td>
</tr>
<tr>
<td>Familial mild mental retardation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hypertelorism with other prominent ocular defects</td>
</tr>
<tr>
<td>Waardenburg syndrome of dystopia canthorum, white forelock,</td>
</tr>
<tr>
<td>and deafness</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rieger syndrome of iris dysplasia, hypodontia, and</td>
</tr>
<tr>
<td>questionable myotonic dystrophy</td>
</tr>
<tr>
<td>With heterotopia of the macula and pseudexotropia</td>
</tr>
<tr>
<td>Fraser syndrome of cryptophthalmia, ear and genital</td>
</tr>
<tr>
<td>malformations</td>
</tr>
<tr>
<td>Iris dysplasia and mental retardation</td>
</tr>
<tr>
<td>Stickler syndrome of arthroophthalmopathy: myopia, retinal</td>
</tr>
<tr>
<td>detachment, microgadia, cleft palate, and marfanoid habitus,</td>
</tr>
<tr>
<td>with hyperextensible joints</td>
</tr>
<tr>
<td>Wildervank i–Waardenburg–Franceschetti–Klein syndrome,</td>
</tr>
<tr>
<td>cervicooculouacoustic syndrome of congenital deafness,</td>
</tr>
<tr>
<td>abducens paralysis, frequently other face and tooth</td>
</tr>
<tr>
<td>deformities and heterochromia of the irises</td>
</tr>
<tr>
<td>Wildervank II syndrome of microphthalmia and</td>
</tr>
<tr>
<td>bipharyphosphimosis with facial dysmopia, dysostosis</td>
</tr>
<tr>
<td>zigomatica–maxillomandibulofacialis</td>
</tr>
<tr>
<td>Mohr syndrome of conduction deafness, short stature, and</td>
</tr>
<tr>
<td>multiple minor facial and skeletal malformations; autosomal</td>
</tr>
<tr>
<td>recessive; patients probably have only dystopia canthorum</td>
</tr>
<tr>
<td>and not true hypertelorism</td>
</tr>
<tr>
<td>Freeman-Sheldon whistling face syndrome of short stature,</td>
</tr>
<tr>
<td>whistling, pursed appearance of lips, blepharophimosis, ptosis,</td>
</tr>
<tr>
<td>strabismus, subcutaneous ridge across lower forehead, and</td>
</tr>
<tr>
<td>scoliosis</td>
</tr>
<tr>
<td>Familial telecanthus–hypospadias–multiple minor malformations</td>
</tr>
<tr>
<td>syndrome—see under hypertelorism with sex organ</td>
</tr>
<tr>
<td>malformations</td>
</tr>
<tr>
<td>Nystalgia and tremor</td>
</tr>
<tr>
<td>Miscellaneous ocular defects</td>
</tr>
<tr>
<td>Corneal ulceration, pseudexophthalmos, bifid tongue, and</td>
</tr>
<tr>
<td>extremity and digital malformations</td>
</tr>
<tr>
<td>Microophthalmos, iris dysplasia, corneal opacity, severe</td>
</tr>
<tr>
<td>retardation, and spastic cerebral tetraplegia</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hypertelorism with cleft lip-palate</td>
</tr>
<tr>
<td>Ordinary cleft lip and palate</td>
</tr>
<tr>
<td>Robert syndrome of cleft lip and palate with tetraphocomelia and</td>
</tr>
<tr>
<td>geniral entitlement</td>
</tr>
<tr>
<td>Cleft lip, iridochoroidal coloboma, and deafness</td>
</tr>
<tr>
<td>Juberg-Hayward syndrome of oral–cranial–digital anomalies</td>
</tr>
<tr>
<td>Orofaciodigital syndrome I and II</td>
</tr>
<tr>
<td>Meckel-Gruber syndrome</td>
</tr>
<tr>
<td>Median cleft face syndrome</td>
</tr>
<tr>
<td>Cleft lip/palate, tetraporomelia, deformed pinna, scarcity of</td>
</tr>
<tr>
<td>hair, and hypoplastic nipples</td>
</tr>
<tr>
<td>Oral duplication (two hard palates and dental arches)</td>
</tr>
<tr>
<td>Hypertelorism, microtia, and facial clefting (HMC syndrome)</td>
</tr>
<tr>
<td>Cleft lip with cutis gyrata and acanthosis nigricans</td>
</tr>
<tr>
<td>Hypertelorism with prominent skin manifestations and</td>
</tr>
<tr>
<td>frequent mental retardation</td>
</tr>
<tr>
<td>Riley-Day syndrome, true hypertelorism doubtful</td>
</tr>
<tr>
<td>Abirism syndrome</td>
</tr>
<tr>
<td>Segmental vitiligo, porencephaly, and nasofrontal mucocoele</td>
</tr>
<tr>
<td>Leopard syndrome of multiple lentigines, pulmonary stenosis,</td>
</tr>
<tr>
<td>and cardiac conduction defects with dysrythmia</td>
</tr>
<tr>
<td>Basal cell nevus syndrome</td>
</tr>
<tr>
<td>Hypohidrotic ectodermal dysplasia syndrome</td>
</tr>
<tr>
<td>Sipgren-Larsen syndrome</td>
</tr>
<tr>
<td>G–syndrome of dyschondroplasia, cutis laxa, trigonocephaly (?)</td>
</tr>
<tr>
<td>polysyndactyly, and kewpie doll facies</td>
</tr>
</tbody>
</table>

Axial and coronal scans passing through the orbits (O) of a 26-week fetus with hypertelorism. The interorbital distance (black arrows) is increased.

Canthal distance. Interorbital distance is measured on posteroanterior radiograms. Analysis of the literature is somewhat confusing, and many authors have used intercanthal distance to define hypertelorism. However, there are anomalies of the soft tissues of the face that can lead to changes in intercanthal distances without affecting interorbital distance (epicanthal folds, dystopia canthorum, cryptophthalmus). It is now well established that the definition of hypertelorism is based on radiographic interorbital measurements.

In the overwhelming number of cases, hypertelorism is bilateral, although some unilateral cases have been reported in such conditions as plagiocephaly and proboscis lateralis. Hypertelorism can be either an isolated finding or associated with other clinical syndromes or malformations. Table 2-2 is an exhaustive classification, provided by DeMyer, of hypertelorism according to associated abnormalities.

A few entities deserve to be considered in more detail. The most common syndromes with hypertelorism are the median cleft syndrome and craniosynostoses. The median cleft face syndrome, or frontonasal dysplasia, is characterized in its most severe expression by hypertelorism, median cleft lip with or without a median cleft of the hard palate and nose, and cranium bifidum occultum. At the other end of the spectrum is the infant with only mild hypertelorism and broad nasal root. Agenesis of the corpus callosum has been described in these infants. Among the craniosynostoses, hypertelorism can be consistently found in Apert, Crouzon, and Carpenter syndromes. For a more detailed discussion of the subject the reader is referred to the section on craniosynostoses, page 369.

In the same fetus as in Figure 2-17, an axial scan passing through the lateral ventricles demonstrates the typical enlargement of the atria (At), widely separated bodies (B), and upward displacement of the third ventricle (*) pathognomonic of agenesis of the corpus callosum. O, orbits.
Diagnosis
Nomograms indicating the normal values of the ultrasound measurements of the interorbital distance in the fetus are now available. By using these nomograms, the prenatal diagnosis of hypertelorism in a case of median cleft face syndrome has been reported. We have been able to identify hypertelorism in one fetus with agenesis of the corpus callosum, Dandy-Walker malformation, double outlet right ventricle, bilateral clubfeet, and normal chromosomes (Figs. 2-17, 2-18). However, the accuracy of sonography in the diagnosis of hypertelorism has not been established in a large series of cases.

Prognosis and Obstetrical Management
Hypertelorism per se results only in cosmetic problems and possible impairment of stereoscopic binocular vision. For severe cases, a number of operative procedures, such as canthoplasty, orbitoplasty, surgical positioning of the eyebrows, and rhinoplasty, have been proposed. It should be stressed that "hypertelorism by itself has little or no status as an entity, does not serve to identify a unitary group of syndromes, and by itself it does not constitute a diagnosis." Therefore, a careful survey for associated anatomic anomalies and a karyotype is mandatory. The obstetrical management depends on the precise diagnosis. Hypertelorism per se does not require a change in standard obstetrical care. The median cleft face syndrome is usually associated with normal intelligence and life span. However, there is a high likelihood of mental retardation when either extracephalic anomalies or an extreme degree of hypertelorism is found. The severity of the cosmetic disturbance should not be underestimated, because this syndrome may be associated with extremely grotesque features.

REFERENCES
24. DeMyer W, Zeman W: Alobar holoprosencephaly (arhinencephaly) with median cleft lip and palate:
Hypotelorism

Synonym
Stenopia.

Definition
Hypotelorism is a decreased interorbital distance.

Incidence
Very rare.

Etiology
With exceedingly rare exceptions, hypotelorism has always been found in association with other severe anomalies (Table 2-3). The main association is with the holoprosencephalic malformation sequence.

Embryology and Pathogenesis
The craniofacial skeleton originates from a mesenchymal mass that has a dual origin: the mesoderm and the neural crest that migrate into the region. There is a close correlation between the development of the midline facial structures (forehead, nose, interorbital structures, and upper lip) and the differentiation process of the forebrain. Both events are probably induced by the prechordal mesenchyma, the tissue interposed between the prosencephalon and the roof of the primitive mouth (stomodeum). Therefore, midline defects of the face, such as hypotelorism, are frequently associated with cerebral anomalies, mainly holoprosencephaly.

Although there is some controversy about the precise nature of the process, an interference with the activity of the prechordal mesenchyma would lead to defects in both areas, brain and face. The facial anomalies encompass a broad range of defects that are due to aplasia or varying degrees of hypoplasia of the median facial structures. Underdevelopment of the skeleton of the face would result in medial displacement of the orbits. The cerebral anomalies are mainly due to varying degrees of failure of cleavage of the prosencephalon, with incomplete division of the cerebral hemispheres and underlying structures (see pp. 59-65).

Hypotelorism can also be found in association with trigonocephaly, microcephaly, Meckel syndrome, and chromosomal aberrations. It is unclear from some of the reports of hypotelorism whether it occurred as an isolated finding or as a part of a holoprosencephalic malformation sequence.

Pathology and Associated Anomalies
The interorbital distance is reduced, and severe associated anomalies are almost always present. Other facial anomalies can occur as a part of the holoprosencephalic sequence. The classification suggested by DeMyer is shown in Table 1-17.

Diagnosis
The diagnosis is based on demonstration of a reduced interocular distance (Table 2-1, Figs. 2-6, 2-9, 2-19). The prenatal diagnosis of hypotelorism, always in association with holoprosencephaly, has been reported in the literature several times.

Prognosis and Obstetrical Management
Prognosis and management depend entirely on the associated malformations. A careful survey of the fetal anatomy and karyotyping must be performed.

![Figure 2-19. Axial scan passing through the orbits (0) in a 22-week fetus with alobar holoprosencephaly. The interorbital distance (black arrows) is obviously decreased.](Reproduced with permission from Pilu et al.: Am J Obstet Gynecol 155:45, 1986.)
REFERENCES

Microphthalmia

Definition
Decreased size of the eyeball. The term “anophthalmia” refers to absence of the eye. However, it should be reserved for the pathologist, who must demonstrate not only absence of the eye but also of optic nerves, chiasma, and tracts.

Incidence
The incidence is difficult to define. Microphthalmia/anophthalmia is responsible for 4 percent of cases of congenital inheritable blindness.

Etiology/Pathology
Microphthalmia is generally associated with other anomalies. On rare occasions it occurs in the absence of other ocular and systemic malformations and the term “nanophthalmous” is used. Microphthalmia can occur as a sporadic disorder or as a condition inherited with an autosomal dominant, recessive, or X-linked pattern. Microphthalmia can be unilateral or bilateral. The term “cryptophthalmia” refers to a condition in which there is fusion of the eyelids, and it is frequently associated with microphthalmia.

Diagnosis
The diagnosis can be suspected by demonstrating an orbital diameter below the 5th percentile for gestational age (Table 2-1, Fig. 2-5). It should be stressed that this is a statistical definition of microphthalmia. Some normal infants will fall within this range. A careful examination of the intraorbital anatomy is indicated to identify lens, pupil, and optic nerve. The diagnosis of this condition has been reported twice. One fetus had Fraser syndrome, and the other hemifacial microsomia (Goldenhar-Gorlin syndrome). In the former case, the diagnosis was made in a patient at risk for this autosomal recessive condition. In the latter case, the diagnosis was made by detecting unilateral n-drophthalmia and a deformed ipsilateral ear. Table 2-4 illustrates conditions associated with microphthalmia that can be diagnosed in utero. Once the diagnosis is suspected, a search for associated anomalies is indicated. The sonographer should concentrate on the identification of microtia, micrognathia, syndactyly, camptodactyly, median cleft, feet abnormalities (rockerbottom and talipes), hemivertebrae, and congenital heart defects. Karyotyping is indicated, because several
chromosomal disorders can be associated with microphthalmia. (Fig 1-71 shows a case of anophthalmia.)

Prognosis and Obstetrical Management
Management depends on the specific syndrome responsible for microphthalmia

REFERENCES
ANOMALIES OF THE NOSE

Arhinia

Definition
Absence of the nose.

Incidence
Unknown. It is an extremely rare condition.

Etiology and Associated Anomalies
Unknown in most cases. It may occur as an isolated malformation or be part of a malformation complex, such as holoprosencephaly or mandibulofacial dysostosis (Treacher Collins syndrome).

Embryology
The nasal cavity originates from the nasal sacs which are paired invaginations of the ectoderm. The nasal sacs are originally separated from the oral cavity by the oronasal membrane, which subsequently undergoes reabsorption. At about 6 weeks of gestation, the primitive nasal and oral cavities communicate freely through an opening that is then progressively closed by the developing palate. At about 12 weeks gestation, when the lateral palatine processes fuse medially with the nasal septum, the oral and the two nasal cavities are formed and separated. The external nose derives from the lower portion of the frontonasal prominence, which merges on both sides with the maxillary processes (Fig. 2-16).

Pathology
In arhinia, a concavity extending from the forehead to the upper lip is usually seen in the position normally occupied by the nose. In unilateral aplasia, a small pit is often seen in the area of the nostril.

Diagnosis
The diagnosis can be easily made by using both axial and longitudinal scans of the fetal face. A careful survey for associated anomalies is mandatory (see Fig. 2-25).

Prognosis and Obstetrical Management
These depend on the associated anomalies. Isolated arhinia is compatible with life and does not require alteration in obstetrical care.

REFERENCES

Proboscis

Definition
A proboscis is a trunklike appendage with either one or two internal openings, usually associated with absence of the nose.

Incidence
Unknown. Cyclopia and cebocephaly, two of the main conditions in which a proboscis is present, have been reported to occur in 1:40,000 and 1:16,000 births, respectively.

Embryology
Normal development of the nose is discussed above. The presence of a proboscis is almost always found in association with holoprosencephaly. It has been suggested that in these cases, a primary disorder of the
prechordal mesenchyma results in an abnormal induction of the midfacial structures. Abnormal development of the nasal prominences may lead to a fusion of the olfactory placodes and formation of a proboscis. Derangement in the morphogenesis of the medial facial structures may lead to different positions of the proboscis with regard to the eye(s).2,4

Pathology and Associated Anomalies
The proboscis usually has a single central opening. According to the classification of holoprosencephalic facies suggested by DeMyer (Table 1-17), the proboscis may be inserted either above the orbit(s) (cyclopia, ethmocephaly) or in a normal position between the orbits (cebocephaly). The openings of the proboscis have no connection with the choanae. The ethmoid, the nasal conchae, and the nasal and lacrimal bones are absent. Typically, in cyclopia, ethmocephaly, and cebocephaly, there is no cleft of the lip and palate. The presence of a proboscis has rarely been reported in the absence of holoprosencephaly.8 In these cases, there is usually unilateral nasal aplasia, and the proboscis is found in the position normally occupied by the missing nasal structures. In rare cases, a bilateral proboscis has been found.5

Diagnosis
The diagnosis relies on the demonstration of a trunklike structure, usually with a single central opening either occupying the normal position of the nose6 or hanging above the orbits.1,5 (Fig. 2-20).

Prognosis and Obstetrical Management
Most cases will be associated with holoprosencephaly, which was discussed in the previous chapter (see pp. 59-64). A karyotype should be performed.

REFERENCES

ANOMALIES OF THE LIP AND PALATE

Facial Clefting

Synonyms
Cleft lip and cleft palate.

Definition
This term refers to a wide spectrum of lateral clefting defects usually involving the upper lip, the palate, or both. Median cleft lip and palate is a different entity and will be discussed separately (see p. 105).

Incidence
Facial clefting is the second most common congenital malformation, accounting for 13 percent of all anomalies. Its incidence in the United States has been estimated to be 1:700 live births. In 50 percent of patients, both lip and palate are defective, whereas either the lip or the palate alone is involved in 25 percent of patients each.

Etiology
In the vast majority of patients, cleft lip (CL) and cleft palate (CP) have a multifactorial etiology, with both genetic and environmental factors accounting for the defect. The empiric risks of recurrence for these cases are reported in Table 2-5. CL with or without CP and isolated CP are two different anomalies. With exceedingly rare exceptions, recurrences are type specific. If the index case has CL-CP, there is no increased risk for isolated CP, and vice versa. In some cases, facial clefts are a part of well-established mendelian, chromosomal, and nongenetic syndromes. Gorlin et al. list 72 possible associations (Table 2-6).

CL-CP and isolated CP can occur as a component of a well-defined syndrome in 3 percent of the cases (syndromic) and in 97 percent of cases is nonsyndromic. Of nonsyndromic defects, CL-CP represents 75 percent of all clefting malformations (25 percent isolated CL and 50 percent CL+CP), and isolated cleft palate represents 25 percent. CL-CP occur as a result of a multifactorial defect or the combination of an autosomal dominant with incomplete expressivity and penetrance (25 percent) or a sporadic disorder (75 percent). The male:female ratio is 2:1. If the parent affected is the mother, the recurrence risk is decreased, and if it is the father, the recurrence risk is increased. The opposite is true for CL-CP. The claimed risk associated with diazepam and steroideal agents intake has not been confirmed in carefully controlled studies. Chromosomal abnormalities are present in less than 1 percent of clefting abnormalities.

Embryology
Shortly after the third week of gestation, outgrowths of mesenchyma result in the formation of ectodermal elevations that surround the primitiva oral cavity or stomodeum. These structures (frontonasal prominence, maxillary prominence, and mandibular prominence) are separated by grooves (Fig. 2-16). Progressive growth of the prominences obliterates the grooves. Cleft lip results from the persistence of the grooves. Collapse of the mesenchymal tissue under the groove leads to the formation of the cleft (Fig. 2-21). The palate originates from the fusion of three palatine processes. The median originates from the medial nasal prominences, and the two lateral ones originate from the maxillary processes. The palatine processes fuse also with the nasal septum, which divides the nasal cavities (Fig. 2-22). Cleft palate is the consequence of lack of fusion of these structures.
Facial clefts encompass a broad spectrum of severity, ranging from minimal defects, such as a bifid uvula, linear indentation of the lip, or submucous cleft of the soft palate, to large deep defects of the facial bones and soft tissues (Fig. 2-23). The typical CL will appear as a linear defect extending from one side of the lip into the nostril. CP associated with CL may extend through the alveolar ridge and hard palate, reaching the floor of the nasal cavity or even the floor of the orbit. Isolated cleft palate may include defects of the hard palate, the soft palate, or both or the submuco-
Figure 2-21. Drawings illustrating the embryologic basis of complete unilateral cleft lip. A. Five-week embryo. B. Horizontal section through the head, illustrating the grooves between the maxillary prominences and the medial nasal prominences. C. Six-week embryo, showing a persistent labial groove on the left side. D. Horizontal section through the head, showing the disappearance of the groove on the right side because of proliferation of the mesenchyma (arrows). E. Seven-week embryo. F. Horizontal section through the head, showing that the epithelium on the right has almost been pushed out of the groove between the maxillary prominence and medial nasal prominence. G. Ten-week fetus with a complete unilateral cleft lip. H. Horizontal section through the head following stretching of the epithelium and breakdown of the tissues in the floor of the persistent labial groove on the left side. (Reproduced with permission from Moore: The Developing Human: Clinically Oriented Embryology, 2d ed. Philadelphia, Saunders, 1977.)

Associated Anomalies

Associated anomalies are found in 50 percent of patients with isolated CP and in only 13 percent of those with CL-CP. An incidence of 60 percent has been found in embryos and fetuses with facial clefting. In the majority of patients, the associated anomalies do not conform to an established syndrome. In cases of either isolated CL or CP, the most frequent anomaly is clubfoot, whereas in cases of CL-CP, it is polydactyly. Of particular importance is the association with congenital heart disease. No specific pattern could be identified. Specific associations with well-described syndromes are shown in Table 2-6.

Diagnosis

The sonographic diagnosis of CL-CP in the fetus depends on demonstration of a groove extending from one of the nostrils inside the lip and possibly the alveolar ridge. Both axial and coronal planes can be used. In our experience, coronal scans have proved to be the most informative (Fig. 2-24). Several cases of prenatal diagnosis of CL-CP have been reported in the literature. However, it must be stressed that in all these cases, the facial lesions were quite large. The accuracy of ultrasound in detecting small lesions has not been established. At present the ultrasound diagnosis of isolated CP appears difficult in cases at risk for mendelian syndromes associated with isolated CP, fetoscopy could be diagnostic. We have seen several cases of both CL and CP associated with polyhydramnios, and, therefore,
we believe that an increased amount of amniotic fluid is an indication for careful examination of the fetal face.

Prognosis

Minimal defects, such as lineal indentations of the lips or submucosal cleft of the soft palate, may not require surgical correction. Larger defects cause cosmetic, swallowing, and respiratory problems. Recent advances in surgical technique have produced good cosmetic and functional results. However, prognosis depends primarily on the presence and type of associated anomalies.\(^{13}\)

Obstetrical Management

A careful survey for associated anatomic defects is indicated. The advisability of karyotype is controversial in view of the low incidence of chromosomal anomalies in clefting defects. In the absence of other anomalies, fetal CL-CP does not require a change in standard obstetrical care. Infants should be delivered in a tertiary center because of the possibility of respiratory and feeding problems.

REFERENCES

11. Meskin LH, Pruzansky S, Gullen WH: An epidemiologic investigation of factors related to the extent of

Median Cleft Lip

Synonyms
Complete median cleft lip, pseudomedian cleft lip, and premaxillary agenesis.

Definition
A quadrangular or triangular median defect of the upper lip, possibly extending posteriorly to the nose.

Incidence
Median cleft lip (MCL) accounts for 0.2 to 0.7 percent of all cases of cleft lip.\(^1^4\)

Embryology
The median portion of the upper lip and maxilla derives from the frontonasal prominence, which joins the maxillary prominences (Fig. 2-16). In cases of median cleft lip, there is absence or underdevelopment of this portion.

There is a close correlation between the development of the midline facial structures and the differentiation process of the forebrain. Both events are probably induced by the prechordal mesenchyma, the tissue interposed between the prosencephalon, and the roof of the primitiva mouth (stomodeum). Therefore, midline defects of the face, such as MCL,

![Figure 2-25. Median cleft lip in a third trimester holoprosencephalic fetus. A. Midsagittal scan of the face reveals an unusually high position of the tongue (T) inside the oral cavity, as well as absence of the nose (curved arrow). B. Axial scan of the palate demonstrating a large quadrangular median cleft (curved arrow). Ch, cheeks. C. Postnatal appearance of the stillborn infant. Note the median cleft lip and palate, absence of the nose, anophthalmia, and low set ears (arrow). (Reproduced with permission from Pilu et al.: Am J Obstet Gynecol 155:45, 1986.)](image-url)
106 THE FACE

Figure 2-26. Axial scan at midfacial level in a third trimester fetus with holoprosencephaly and a large cleft of the palate. The seemingly intact appearance of the palate is due to the tongue (T) filling the defect. A correct diagnosis could be made by observing the midline cleft of the upper lip (curved arrow), as well as the active movement of the tongue.

are frequently associated with cerebral anomalies, such as holoprosencephaly (see Fig. 1-64, Table 1-17)

Etiology and Pathology
MCL has been described only as part of two distinct syndromes: MCL with orbital hypotelorism, which is a synonym for holoprosencephaly, and MCL with orbital hypertelorism. In the former case, there is absence of the premaxillary bone, nasal septum, nasal bones, and crista galli. The ethmoid bone that sets the interorbital distance is hypoplastic. The secondary palate may or may not be involved. For a detailed description of the other facial and cerebral findings, see the section on hypotelorism in this chapter and the section on holoprosencephaly in Chapter 1. MCL with hypertelorism (also known as “median cleft face syndrome” or “frontonasal dysplasia”) is characterized by the presence of a bifid nose and cranium bifidum occultum. The premaxilla is usually present. The brain is normal in most cases.

Diagnosis
The diagnosis relies on the demonstration of a wide central defect involving both the upper lip and the palate in our experience, the defect is better demonstrated in axial scans of the palate (Fig. 2-25). A useful hint for the diagnosis is the visualization of the tongue in a higher than normal position within the oral cavity. The sonographer should be alerted to a possible pitfall in the diagnosis of MCL. On occasion, the defect may be filled by the tongue, giving a false impression of an intact palate (Fig. 2-26). Recognition of MCL should immediately prompt a careful ultrasound investigation of the entire fetal anatomy, with special attention to the intracranial contents. Orbital measurements will identify hypotelorism or hypertelorism.

Prognosis and Obstetrical Management
Prognosis depends entirely on the association with other anomalies. MCL syndrome is associated in 80 percent of cases with normal intelligence. Radical cosmetic surgery may be required. Alobar holoprosencephaly is uniformly lethal.

REFERENCES

Epignathus

Definition
A teratoma that arises from the oral cavity or pharynx.

Incidence
Two percent of all pediatric teratomas occur in the nasopharyngeal area (including oral, tonsillar, and
Figure 2-27. Sonogram of a 32-week fetus, demonstrating a complex mass with solid (S) and cystic (C) components. The arrow points to areas of calcification with acoustic shadowing. (Reproduced with permission from Chervenak et al.: J Ultrasound Med 3:235, 1984.)

Figure 2-28. Coronal scan of the same fetus as in Figure 2-27, with arrows outlining the mass. O, orbit; M, mouth area; mouth not visualized. (Reproduced with permission from Chervenak et al: J Ultrasound Med 3:235, 1984.)

Figure 2-29. Mass arising from the palate, obstructing the mouth opening and nostril of the neonate. (Reproduced with permission from Chervenak et al.: J Ultrasound Med 3:235, 1984.)

Figure 2-30. Appearance of mass after resection. (Reproduced with permission from Chervenak et al.: J Ultrasound Med 3:235, 1984.)
Figure 2-31. Radiograph showing the relation of the mass to the skull and calcifications in the mass. (Reproduced with permission from Chervenak et al: J Ultrasound Med 3:235, 1984.)

Most of approximately 100 cases have been reported in newborns.

Pathology
Most tumors arise from the sphenoid bone. Some arise from the hard and soft palate, the pharynx, the tongue, and jaw. From their sites of origin, the tumors grow into the oral or nasal cavity or intracranially. Most tumors are benign. Histologically, they consist of tissues derived from any of the three germinal layers. Most often they contain adipose tissue, cartilage, bone, and nervous tissue. These tumors can fill the mouth and airways and lead to acute asphyxia immediately after birth. Obstruction of the mouth is responsible for polyhydramnios.

Associated Anomalies
Six percent of these tumors have associated anomalies. They include cleft palate, multiple facial hemangiomas, branchial cysts, hypertelorism, umbilical hernia, and congenital heart defects. Facial anomalies have been attributed to the mechanical effects of the tumor on developing structures.

Diagnosis
Antenatal sonographic findings have been reported in two fetuses. A solid tumor emanating from the fetal oral cavity is suggestive of this condition (Figs. 2-27 through 2-31). Calcifications and cystic components may be visualized. Differential diagnosis include neck teratomas, cephaloceles, conjoined twins, and other tumors of the facial structures. Polyhydramnios is usually present. A careful examination of the CNS anatomy is important because the tumor may grow intracranially.

Prognosis
The outlook depends on the size of the lesion and the involvement of vital structures. Lesions detected antenatally have been very large. Polyhydramnios has been associated with poor prognosis. Soft tissue dystocia can occur. The major cause of neonatal death is asphyxia because of airway obstruction. Surgical resection and normal postoperative course are possible and have been documented. There are no reported cases of malignancies. Two cases of epignathus have been diagnosed in our institution, and both infants died. One died immediately after birth and the other after progressive respiratory failure.

Obstetrical Management
Management in the third trimester depends on the size of the lesion. Infants with large tumors are best delivered by cesarean section. An expert pediatric team must be available for intubation of the infant.

REFERENCES
ABNORMALITIES OF THE MANDIBLE

Robin Anomalad

Synonyms
Cleft palate, micrognathia and glossoptosis, and Pierre Robin syndrome.

Definition
This anomalad is characterized by the association of micrognathia and glossoptosis. Frequently, a posterior cleft palate or a high arched palate is present.

Incidence
The frequency is 1:30,000.2

Etiology
In 40 percent of cases, the anomaly is isolated and is mostly sporadic, although familiar cases suggesting both autosomal recessives and autosomal dominant patterns of transmission have been reported. This anomalad is most frequently seen in association with other anomalies or with recognized genetic and non-genetic syndromes (Table 2-7).

Embryology
The mandible arises from the merging of the two mandibular prominences that inferiorly delimit the stomodeum. The palate originales from the fusion of the three palatine processes. The median derives from the frontonasal prominence and the two lateral ones originate from the maxillary processes.

It has been suggested that the three components of the anomalad are related. The primary disorder is probably an early hypoplasia of the mandible. This would lead to posterior displacement of the tongue, thus preventing the normal closure of the posterior palatine processes.4

Pathology
The hypoplasia of the mandible leads to foreshortening of the floor of the mouth and reduction of the size of the oral cavity. As a consequence, there is a tendency to glossoptosis, which may alter the development of the palate and lead to a posterior cleft or a high arched deformity.1

Associated Anomalies
The Robin anomalad is found as an isolated lesion in 39 percent of all patients. In 36 percent, one or more associated anomalies are found, but these do not conform to a well-established syndrome. In 25 percent of patients, a known syndrome is found.7

Diagnosis
Only one case of Robin anomalad has been identified in utero thus far.9 The diagnosis relied upon the demonstration of micrognathia in a midsagittal scan of the face (Fig. 2-32). The hypoplasia of the mandible could not be detected in the second trimester. This suggests the possibility of a progressive course, which may preclude an early diagnosis.6

Polyhydramnios was seen in the reported case. It is likely to result from failure to swallow as a consequence of the glossoptosis.6 Sonographers should suspect Robin anomalad when polyhydramnios is associated with micrognathia. A posterior cleft palate is frequently present, but it may be difficult to detect with ultrasound. The difficulties in imaging this part of the fetal anatomy make this diagnosis unlikely.

A careful survey of fetal anatomy is indicated. Because congenital heart disease occurs in 10 percent of patients, a careful survey of fetal anatomy is recommended.
of affected neonates, fetal echocardiography is recommended.

Prognosis
The Robin anomalad is in many cases a neonatal emergency. Glossoptosis may lead to obstruction of the airways and suffocation. Many cases of sudden death have been described. Infants have difficulties feeding because of the ball valve effect of the tongue in the oropharynx and because of vomiting. This leads to failure to thrive. However, with proper assistance, these infants may overcome these difficulties. With time there is some growth of the mandible.

Obstetrical Management
If a prenatal diagnosis is made, the sonographer should look for associated anomalies. It is mandatory that a pediatrician be present in the delivery room and be prepared to intubate the infant. This procedure may be lifesaving. Karyotype should be considered.

REFERENCES

Otocephaly

Synonyms
Synotia and melotia.

Definition
Otocephaly is a grotesque anomaly characterized by absence or hypoplasia of the mandible, proximity of the temporal bones, and abnormal horizontal position of the ears.

Incidence
Unknown. It seems to be an extremely rare disorder.
Embryology
The mandible arises from the fusion of the two mandibular prominences that inferiorly delimit the stomodeum. The primitiva externas ears are located laterally and inferiorly to the mandibular prominences, and they migrate (Fig. 2-16). Otocephaly is thought to result from failure of development of the mandible, possibly secondary to a defect in neural crest cell migration.3 Absence or extreme hypoplasia of the mandible leads to an abnormal position of the ears, which are horizontal, with the lobules located close to the midline. A spectrum of anatomic lesions ranging from ears closely apposed to the midline (synotia), agnathia, absence of the mouth to varying degrees of micrognathia and low set ears (melotia) is possible.

Etiology
Unknown. Otocephaly may be part of very severe malformation complexes, such as conjoined twins and holoprosencephaly.4 This malformation has been produced experimentally by X-irradiation and administration of streptonigrin in mice.2,4

Associated Anomalies
Holoprosencephaly, neural tube defects, cephaloceles, midline proboscis, hypoplastic tongue, tracheoesophageal fistula, cardiac anomalies, and adrenal hypoplasia.

Diagnosis
This condition should be suspected when it is impossible to visualize the jaw and the ears are seen in a very low position (Fig. 2-33). It is likely that this
condition will be identified in fetuses with very severe associated anomalies, such as anencephaly, holoprosencephaly, and cephaloceles. Milder expressions of otocephaly may be difficult to distinguish on prenatal ultrasound studies from other conditions characterized by very low set ears, such as Treacher-Collins syndrome.

We have recently diagnosed this condition in a fetus with polyhydramnios and an absent stomach. It must be considered, therefore, in the differential diagnosis of esophageal atresia.

Prognosis and Obstetrical Management

This condition is incompatible with life. Pregnancy termination could be offered any time in a pregnancy when a confident diagnosis is made.

REFERENCES